skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pokrifka, Gwenore"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The mechanisms controlling ice crystal growth rates at lowtemperature (T< −40°C) are relatively unknown. A new thermal-gradient diffusion chamber was developed to capture high-resolution images of ice crystals growing from a substrate with minimal vapor competition or shadowing. Time series of dimensional growth rates of columnar ice crystals at cirrus-like temperatures (−67 to −46°C) and moderate to high supersaturation (28 to 80 %) were determined from these images. Results show that growth rates of both primary facet dimensions (aandc) decrease over about the first hour of each experiment, but asymptotically approach constant values. Thea-dimension growth rate is well correlated with the environmental conditions, declining with decreasing temperature and increasing supersaturation. In contrast,c-dimension growth rates from individual experiments are not correlated with temperature and slightly correlated with supersaturation. Together, these trends produce aspect ratios that approach constant values that are negatively correlated with temperature. The ratio of the asymptotic growth rates (dc/da) is tightly correlated with the aspect ratio (ø = c/a), which supports the predictions of crystal growth theory assuming that steps nucleate near facet edges. In contrast, predictions from capacitance theory are not consistent with the measurements. 
    more » « less
    Free, publicly-accessible full text available August 6, 2026
  2. Abstract All cloud and climate models assume ice crystals grow as if they were formed from pure water, even though cloud and haze droplets are solutions. The freezing process of a solution droplet is different than that of a pure water droplet, as shown in prior work. This difference can potentially affect the particle’s subsequent growth as an ice crystal. We present measurements of ice crystal growth from frozen sodium chloride (NaCl) solution droplets in the button electrode levitation diffusion chamber at temperatures between −61° and −40°C. Measured scattering patterns show that concentrated solution droplets remain unfrozen with classical scattering fringes until the droplets freeze. Upon freezing, the scattering patterns become complex within 0.1 s, which is in contrast with frozen pure water particles that retain liquid-like scattering patterns for about a minute. We show that after freezing, solution particles initially grow as spherical-like crystals and then transition to faster growth indicative of a morphological transformation. The measurements indicate that ice formed from solution droplets grows differently and has higher growth rates than ice formed from pure water droplets. We use these results to develop a power-law-based parameterization that captures the supersaturation and mass dependencies. 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  3. Abstract An electrodynamic levitation thermal-gradient diffusion chamber was used to grow 268 individual, small ice particles (initial radii of 8–26 μ m) from the vapor, at temperatures ranging from −65° to −40°C, and supersaturations up to liquid saturation. Growth limited by attachment kinetics was frequently measured at low supersaturation, as shown in prior work. At high supersaturation, enhanced growth was measured, likely due to the development of branches and hollowed facets. The effects of branching and hollowing on particle growth are often treated with an effective density ρ eff . We fit the measured time series with two different models to estimate size-dependent ρ eff values: the first model decreases ρ eff to an asymptotic deposition density ρ dep , and the second models ρ eff by a power law with exponent P . Both methods produce similar results, though the fits with ρ dep typically have lower relative errors. The fit results do not correspond well with models of isometric or planar single-crystalline growth. While single-crystalline columnar crystals correspond to some of the highest growth rates, a newly constructed geometric model of budding rosette crystals produces the best match with the growth data. The relative frequency of occurrence of ρ dep and P values show a clear dependence on ice supersaturation normalized to liquid saturation. We use these relative frequencies of ρ dep and P to derive two supersaturation-dependent mass–size relationships suitable for cloud modeling applications. 
    more » « less
  4. Abstract Observations and measurements show that crystals remain relatively compact at low ice supersaturations, but become increasingly hollowed and complex as the ice supersaturation rises. Prior measurements at temperatures >−25°C indicate that the transition from compact, solid ice to morphologically complex crystals occurs when the excess vapor density exceeds a threshold value of about 0.05 g m−3. A comparable threshold is not available at low temperatures. A temperature-dependent criterion for the excess vapor density threshold (Δρthr) that defines morphological transformations to complex ice is derived from laboratory measurements of vapor grown ice at temperatures below −40°C. This criterion depends on the difference between the equilibrium vapor density of liquid () and ice (ρei) multiplied by a measurement-determined constant,. The new criterion is consistent with prior laboratory measurements, theoretical estimates, and it reproduces the classical result of about 0.05 g m−3above −25°C. Since Δρthrdefines the excess vapor density above which crystals transition to a morphologically complex (lower density) growth mode, we can estimate the critical supersaturation (scrit) for step nucleation during vapor growth. The derived values ofscritare consistent with previous measurements at temperatures above −20°C. No direct measurements ofscritare available for temperatures below −40°C; however, our derived values suggest some measurement-based estimates may be too high while estimates from molecular dynamics simulations may be too low. 
    more » « less
  5. Abstract Variability of ice microphysical properties like crystal size and density in cirrus clouds is important for climate through its impact on radiative forcing, but challenging to represent in models. For the first time, recent laboratory experiments of particle growth (tied to crystal morphology via deposition density) are combined with a state‐of‐the‐art Lagrangian particle‐based microphysics model in large‐eddy simulations to examine sources of microphysical variability in cirrus. Simulated particle size distributions compare well against balloon‐borne observations. Overall, microphysical variability is dominated by variability in the particles' thermodynamic histories. However, diversity in crystal morphology notably increases spatial variability of mean particle size and density, especially at mid‐levels in the cloud. Little correlation between instantaneous crystal properties and supersaturation occurs even though the modeled particle morphology is directly tied to supersaturation based on laboratory measurements. Thus, the individual thermodynamic paths of each particle, not the instantaneous conditions, control the evolution of particle properties. 
    more » « less
  6. null (Ed.)
    Abstract Measurements show that after facets form on frozen water droplets, those facets grow laterally across the crystal surface leading to an increase in volume and surface area with only a small increase in maximum dimension. This lateral growth of the facets is distinctly different from that predicted by the capacitance model and by the theory of faceted growth. In this paper we develop two approximate theories of lateral growth, one that is empirical and one that uses explicit growth mechanisms. We show that both theories can reproduce the overall features of lateral growth on a frozen, supercooled water droplet. Both theories predict that the area-average deposition coefficient should decrease in time as the particle grows, and this result may help explain the divergence of some prior measurements of the deposition coefficient. The theories may also explain the approximately constant mass growth rates that have recently been found in some measurements. We also show that the empirical theory can reproduce the lateral growth that occurs when a previously sublimated crystal is regrown, as may happen during the recycling of crystals in cold clouds. 
    more » « less
  7. There are few measurements of the vapor growth of small ice crystals at temperatures below -30°C. Presented here are mass-growth measurements of heterogeneously and homogeneously frozen ice particles grown within an electrodynamic levitation diffusion chamber at temperatures between -44 and -30°C and supersaturations ( s i ) between 3 and 29%. These growth data are analyzed with two methods devised to estimate the deposition coefficient ( α) without the direct use of s i . Measurements of s i are typically uncertain, which has called past estimates of α into question. We find that the deposition coefficient ranges from 0.002 to unity and is scattered with temperature, as shown in prior measurements. The data collectively also show a relationship between α and s i , with α rising (falling) with increasing s i for homogeneously (heterogeneously) frozen ice. Analysis of the normalized mass growth rates reveals that heterogeneously-frozen crystals grow near the maximum rate at low s i , but show increasingly inhibited (low α) growth at high s i . Additionally, 7 of the 17 homogeneously frozen crystals cannot be modeled with faceted growth theory or constant α. These cases require the growth mode to transition from efficient to inefficient in time, leading to a large decline in α. Such transitions may be, in part, responsible for the inconsistency in prior measurements of α. 
    more » « less